Walk-off Angle Calculator for SHG
Calculator of Walkoff angle for SHG
Calculator of Walkoff angle for SHG
Angle Calculation
Angle Curve
Program Description
Main Formula
Crystal Properties
Crystal Refractive Index Equation
References
|
1.Select crystal and type: 2.Fundamental wavelength: nm |
|
1.Select crystal and type: 2.Start wavelength: nm 3.End wavelength: nm |
This program is used to calculate the walk-off angle of SHG in nonlinear crystals.
Function 1: Calculate the walk-off angle for a single wavelength in a selected crystal.
Function 2: Calculate the walk-off angle over a range of wavelengths and plot the trend.
Tip: Use the tabs above to calculate and view related information.
Function 1: Calculate the walk-off angle for a single wavelength in a selected crystal.
Function 2: Calculate the walk-off angle over a range of wavelengths and plot the trend.
Tip: Use the tabs above to calculate and view related information.
1.Walk-off angle for type-I phase-matched SHG in a negative uniaxial crystal:
$$\rho = \arctan \left(\frac{1}{2}\frac{(n^{2\omega}_o)^2-(n^{2\omega}_e)^2}{(n^{2\omega}_o)^2\sin^2\theta_m+(n^{2\omega}_e)^2\cos^2\theta_m}\sin2\theta_m\right)$$
2.Walk-off angle for type-I phase-matched SHG in a positive uniaxial crystal:
$$\rho = \arctan \left(\frac{1}{2}\frac{(n^\omega_e)^2-(n^\omega_o)^2}{(n^\omega_o)^2\sin^2\theta_m+(n^\omega_e)^2\cos^2\theta_m}\sin2\theta_m\right)$$
Where $n^\omega_o$, $n^\omega_e$ are the principal refractive indices at the fundamental frequency, and $\theta_m$ is the phase-matching angle (or the angle between the laser and the optic axis).
| Abbrev. | Chemical Formula | Polarity | Transmission Range | Damage Threshold |
| BBO | BaB2O4 | Negative uniaxial | 190~3500nm | 10GW/cm2@1064nm,0.1ns |
| KDP | KH2PO4 | Negative uniaxial | 200~1500nm | 5GW/cm2@1064,10ns |
| KBBF | KBe2BO3F2 | Negative uniaxial | 147~3500nm | 40GW/cm2@1064nm,10ns |
| LBO | LiB3O5 | Negative biaxial | 160~2600nm | 10GW/cm2@1064nm,10ns |
| BIBO | BiB3O6 | Positive biaxial | 286~2500nm | 0.3GW/cm2@1064nm,10ns |
1.BBO crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_o = 2.7359+\frac{0.01878}{\lambda^2-0.01822}-0.01354\lambda^2$$ $$ n^2_e = 2.3753+\frac{0.01224}{\lambda^2-0.01667}-0.01516\lambda^2$$
$$ n^2_o = 2.7359+\frac{0.01878}{\lambda^2-0.01822}-0.01354\lambda^2$$ $$ n^2_e = 2.3753+\frac{0.01224}{\lambda^2-0.01667}-0.01516\lambda^2$$
2.KDP crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_o = 2.259276+\frac{0.01008956}{\lambda^2-0.012942625}+\frac{13.00522\lambda^2}{\lambda^2-400}$$ $$ n^2_e = 2.132668+\frac{0.008637494}{\lambda^2-0.012281043}+\frac{3.2279924\lambda^2}{\lambda^2-400}$$
$$ n^2_o = 2.259276+\frac{0.01008956}{\lambda^2-0.012942625}+\frac{13.00522\lambda^2}{\lambda^2-400}$$ $$ n^2_e = 2.132668+\frac{0.008637494}{\lambda^2-0.012281043}+\frac{3.2279924\lambda^2}{\lambda^2-400}$$
3.KBBF crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_o = 1+\frac{1.1713\lambda^2}{\lambda^2-0.00733}-0.01022\lambda^2$$ $$ n^2_e = 1+\frac{0.9316\lambda^2}{\lambda^2-0.00675}-0.00169\lambda^2$$
$$ n^2_o = 1+\frac{1.1713\lambda^2}{\lambda^2-0.00733}-0.01022\lambda^2$$ $$ n^2_e = 1+\frac{0.9316\lambda^2}{\lambda^2-0.00675}-0.00169\lambda^2$$
4.LBO crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_x = 2.454140+\frac{0.011249}{\lambda^2-0.011350}-0.014591\lambda^2-6.60\times10^{-5}\lambda^4$$ $$ n^2_y = 2.539070+\frac{0.012711}{\lambda^2-0.012523}-0.018540\lambda^2+2.00\times10^{-4}\lambda^4$$ $$ n^2_z = 2.586179+\frac{0.013099}{\lambda^2-0.011893}-0.017968\lambda^2-2.26\times10^{-4}\lambda^4$$
$$ n^2_x = 2.454140+\frac{0.011249}{\lambda^2-0.011350}-0.014591\lambda^2-6.60\times10^{-5}\lambda^4$$ $$ n^2_y = 2.539070+\frac{0.012711}{\lambda^2-0.012523}-0.018540\lambda^2+2.00\times10^{-4}\lambda^4$$ $$ n^2_z = 2.586179+\frac{0.013099}{\lambda^2-0.011893}-0.017968\lambda^2-2.26\times10^{-4}\lambda^4$$
5.BIBO crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_x = 3.65454+\frac{0.05112}{\lambda^2-0.03713}-0.02261\lambda^2$$ $$ n^2_y = 3.07403+\frac{0.03231}{\lambda^2-0.03163}-0.013376\lambda^2$$ $$ n^2_z = 3.16853+\frac{0.03731}{\lambda^2-0.03463}-0.017508\lambda^2$$
$$ n^2_x = 3.65454+\frac{0.05112}{\lambda^2-0.03713}-0.02261\lambda^2$$ $$ n^2_y = 3.07403+\frac{0.03231}{\lambda^2-0.03163}-0.013376\lambda^2$$ $$ n^2_z = 3.16853+\frac{0.03731}{\lambda^2-0.03463}-0.017508\lambda^2$$
[1] Shí Shùnxiáng et al., Nonlinear Optics, P126.
[2] Wáng Nán, PhD dissertation, P91.
[3] http://gb.castech.com/products_list/&pmcId=15.html
[2] Wáng Nán, PhD dissertation, P91.
[3] http://gb.castech.com/products_list/&pmcId=15.html