Walk-off Angle Calculator for SHG
Calculator of Walkoff angle for SHG
Angle Calculation
Angle Curve
Program Description
Main Formula
Crystal Properties
Crystal Refractive Index Equation
References

1.Select crystal and type:
2.Fundamental wavelength:  nm



 

1.Select crystal and type:
2.Start wavelength:  nm  
3.End wavelength:  nm
Output calculated data




This program is used to calculate the walk-off angle of SHG in nonlinear crystals.
Function 1: Calculate the walk-off angle for a single wavelength in a selected crystal.
Function 2: Calculate the walk-off angle over a range of wavelengths and plot the trend.

Tip: Use the tabs above to calculate and view related information.
1.Walk-off angle for type-I phase-matched SHG in a negative uniaxial crystal:
$$\rho = \arctan \left(\frac{1}{2}\frac{(n^{2\omega}_o)^2-(n^{2\omega}_e)^2}{(n^{2\omega}_o)^2\sin^2\theta_m+(n^{2\omega}_e)^2\cos^2\theta_m}\sin2\theta_m\right)$$
2.Walk-off angle for type-I phase-matched SHG in a positive uniaxial crystal:
$$\rho = \arctan \left(\frac{1}{2}\frac{(n^\omega_e)^2-(n^\omega_o)^2}{(n^\omega_o)^2\sin^2\theta_m+(n^\omega_e)^2\cos^2\theta_m}\sin2\theta_m\right)$$
Where $n^\omega_o$, $n^\omega_e$ are the principal refractive indices at the fundamental frequency, and $\theta_m$ is the phase-matching angle (or the angle between the laser and the optic axis).
Abbrev.Chemical FormulaPolarityTransmission RangeDamage Threshold
BBOBaB2O4Negative uniaxial190~3500nm10GW/cm2@1064nm,0.1ns
KDPKH2PO4Negative uniaxial200~1500nm5GW/cm2@1064,10ns
KBBFKBe2BO3F2Negative uniaxial147~3500nm40GW/cm2@1064nm,10ns
LBOLiB3O5Negative biaxial160~2600nm10GW/cm2@1064nm,10ns
BIBOBiB3O6Positive biaxial286~2500nm0.3GW/cm2@1064nm,10ns
1.BBO crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_o = 2.7359+\frac{0.01878}{\lambda^2-0.01822}-0.01354\lambda^2$$ $$ n^2_e = 2.3753+\frac{0.01224}{\lambda^2-0.01667}-0.01516\lambda^2$$
2.KDP crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_o = 2.259276+\frac{0.01008956}{\lambda^2-0.012942625}+\frac{13.00522\lambda^2}{\lambda^2-400}$$ $$ n^2_e = 2.132668+\frac{0.008637494}{\lambda^2-0.012281043}+\frac{3.2279924\lambda^2}{\lambda^2-400}$$
3.KBBF crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_o = 1+\frac{1.1713\lambda^2}{\lambda^2-0.00733}-0.01022\lambda^2$$ $$ n^2_e = 1+\frac{0.9316\lambda^2}{\lambda^2-0.00675}-0.00169\lambda^2$$
4.LBO crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_x = 2.454140+\frac{0.011249}{\lambda^2-0.011350}-0.014591\lambda^2-6.60\times10^{-5}\lambda^4$$ $$ n^2_y = 2.539070+\frac{0.012711}{\lambda^2-0.012523}-0.018540\lambda^2+2.00\times10^{-4}\lambda^4$$ $$ n^2_z = 2.586179+\frac{0.013099}{\lambda^2-0.011893}-0.017968\lambda^2-2.26\times10^{-4}\lambda^4$$
5.BIBO crystal refractive index equations ($\lambda$ in $\mu$m):
$$ n^2_x = 3.65454+\frac{0.05112}{\lambda^2-0.03713}-0.02261\lambda^2$$ $$ n^2_y = 3.07403+\frac{0.03231}{\lambda^2-0.03163}-0.013376\lambda^2$$ $$ n^2_z = 3.16853+\frac{0.03731}{\lambda^2-0.03463}-0.017508\lambda^2$$
[1] Shí Shùnxiáng et al., Nonlinear Optics, P126.
[2] Wáng Nán, PhD dissertation, P91.
[3] http://gb.castech.com/products_list/&pmcId=15.html