BNA Organic Crystal

N-benzyl-2-methyl-4-nitroaniline

- THz/MIR generator and detector
- Multi-THz generator
- Second harmonic generator **Applications**

C

We use our IP-protected Sapphire-BNA technology to overcome the damage of BNA crystals from high power Ti:Sa 800 nm lasers.

Examples of Sapphire strongly helps in preventing the heating up and melting of the BNA crystal. Images below are thermal images. 2 kHz/ 800 nm. Sapphire-BNA was exposed to 12 mJ/cm2. Glass-BNA was exposed to 3.7 mJ/cm2.

Work done by A. Gopal (Jena Uni, Germany). Idea from Johannes Hasse (PSI, Switzerland).

Example Output

Ti:Sa 800 nm: > 4 MV/cm (pp). Smooth Electric field trace. Perfect beam profile. Using old technology (no sapphire). Result by A. Gopal (Jena, Germany). Accepted to Opt. Express.

OPA 1250 nm: > 6 MV/cm (pp). Super broad spectrum. 0.8% efficiency. Perfect beam profile. Diffraction limited focusing using our RIGI microbolometer camera.

Efficient broadband terahertz generation from organic crystal BNA using near infrared pump

Laser Requirements

DSTMS operates with all conventional types of lasers

- Ti:Sa 800 nm
- OPA/ OPCPA
- 1030 nm laser

Expected Output

- Input laser: 1 mJ Ti:Sa 800 nm
- Output THz: 1 MV/cm, 2.1 µJ Application 1: Intense Nonlinear Spectroscopy

Comparison with conventional ZnTe sources:

Crystal	Conversion Efficiency at RT	Bandwidth
BNA	0.25%	3 THz or 9 THz
ZnTe	0.0031%	3 THz

Application 2: Broadband Linear Spectroscopy

Comparison with conventional Lithium Niobate sources:

Crystal	Nonlinear Coefficient	Phase Matching with Ti:Sa 800 nm	Experimental Requirements	Conversion Efficiency at RT	Bandwidth
BNA	234pm/V	Yes	Simple Collinear Scheme	0.25%	3 THz or 9 THz
Lithium Niobate	31.5pm/V	No	Complex Tilted Pulse Front	0.1%	1 THz or 3 THz

Application 3: X-ray Streaking Camera

BNA spectrum provides 5 times better streaking resolution than Lithium Niobate presently

employed in all X-ray streaking cameras.

Literature

Opt. Lett. 4, 1777 (2016); APL 98, 091106 (2011); JOSA B 25, B6 (2008);

Opt. Express 15, 13212 (2007); Appl. Phys. Lett. 98, 091106 (2011); Opt. Lett. 33, 252 (2008)