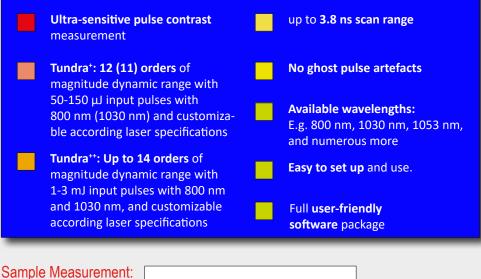
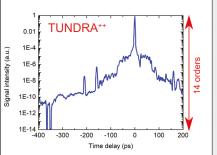
UltraFast Innovations


Ultra-high Contrast Third-order Autocorrelator

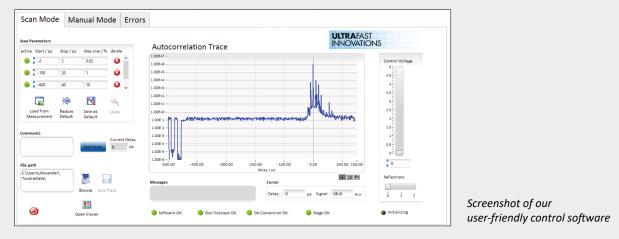
TUNDRA


ur third-order autocorrelator serves as a highly sensitive diagnostic tool for laser pulse contrast measurements. After further development [1], the dynamic range reaches up to 14 orders of magnitude, enough to characterize background or trace tiniest preand post-pulse replica of the most powerful lasers in the world. The autocorrelator generates the third harmonic signal in nonlinear crystals and is set up with all-reflective components, guaranteeing correlation traces without measurement artefacts. It can be employed in a wide range of applications. In particular, high-field experiments in plasma physics require the indepth measurement of the pulse contrast behavior and possible parasitic pulse structures. Compared to second-order autocorrelators, the signal's third-harmonic nature allows to distinguish between preand post-pulses. All these features make our specialized fully automatized autocorrelator an invaluable tool for state-of-the-art characterization of ultrashort laser pulse contrast.

Key Product Features:

Laser intensity contrast measurement of the PHELIX Laser at GSI, Germany. The laser signal (at 10⁻¹¹ level) pulls off about 3 orders of magnitude above the detection limit.

UltraFast Innovations GmbH Am Coulombwall 1 85748 Garching Germany tel. +49 89 36039 - 437 fax. +49 89 36039 - 453 info@ultrafast-innovations.com www.ultrafast-innovations.com



UltraFast Innovations

Characteristics:	TUNDRA	TUNDRA ⁺	TUNDRA ⁺⁺
Single dynamic range (o.o.m.)	11@800 nm 10@1030/1064 nm	12@800 nm 11@1030/1064 nm	up to 14
Delay scan range	633 ps, ≈ 2 ns or ≈ 4 ns		
Time zero position	customizable (633 ps/ 4 ns), user-selectable on-site (2ns)		
Input pulse energy	50-150 µJ		1-3 mJ
Scan step/resolution	2 fs @ 633 ps range 4 fs @ 2 ns / 4 ns		
Input polarization	s-polarized beam (vertical)		
Footprint	54 x 37 cm²	54 x 52 cm ²	54 x 52 cm ²

User-Friendly Software Interface:

TUNDRA comes with a very user-friendly software interface to set up a measurement including variable options. Different measurements can be compared, traces can be analyzed or the thickness of optical elements generating pulse replica can be calculated with our software.

Reference Measurements:

TUNDRA autocorrelators have been used successfully to characterize some of the most powerful and unique Terawatt and Petawatt laser systems in the world, including:

ATLAS, MAP, Garching,	PFS, MPQ, Garching,	SYLOS, ELI-ALPS high-contrast OPCPA
Germany (50-250 TW, 25 fs)	Germany (100 TW, < 10 fs)	laser (5 TW, 9 fs)
SALLE JAUNE, LOA, Palaiseau, France	APOLLON, Palaiseau, France	PHELIX, GSI, Darmstadt, Germany
(200 TW, 26 fs)	(up to 5 PW, 15 fs)	(500 TW, 500 fs)

References:

[1] V. A. Schanz, F. Wagner, M. Roth, and V. Bagnoud, "Noise reduction in third order cross-correlation by angle optimization of the interacting beams," Optics Express **25**(8), 9252-9261 (2017).